

Journal of Organometallic Chemistry 562 (1998) 127-131

Addition of tellurium tetrabromides and alkyl and aryl tellurium tribromides to terminal acetylenes

Hélio A. Stefani^{a,*}, Nicola Petragnani^b, Julio Zukerman-Schpector^c, Luciano Dornelles^{d,1}, Diogo O. Silva^d, Antonio L. Braga^d

^a Faculdade de Ciências Farmacêuticas, Universidade de Sao Paulo, Sao Paulo, Brasil
 ^b Instituto de Química, Universidade de Sao Paulo, Sao Paulo, Brasil
 ^c Departamento de Química, Universidade Federal de Sao Carlos, Sao Carlos, Brasil
 ^d Departamento de Química, Universidade Federal de Santa Maria, Santa Maria, RS-Brasil.

Received 2 September 1997; received in revised form 23 February 1998

Abstract

The addition of tellurium tetrabromides and alkyl and aryl tellurium tribromides to terminal acetylenes gives rise to the corresponding $bis(\beta$ -bromovinyl)tellurium dibromides and (β -bromovinyl)organyl tellurium dibromides which, by treatment with NaBH₄, leads to formation of the reduced tellurides. © 1998 Elsevier Science S.A. All rights reserved.

(1)

Keywords: Acetylene; Aryl tellurium tribromide; Tellurium

The addition of TeCl_4 to phenyl- and diphenyl acetylene was described several years ago [1]. Under neat conditions the corresponding β -chlorovinyl-tellurium trichlorides [1] are formed. Treatment with HOAc converts **1** (R = H) into a mixture of TeCl_4 and $\text{bis}(\beta$ -chlorovinyl)tellurium dichloride **2** (Eq. (1)).

$$PhC = CR + TeCl_4 \rightarrow PhCCl = CRTeCl_3$$

$$PhCCl=CRTeCl_{3} \xrightarrow{HOAc} TeCl_{4} + (PhCCl=CH)_{2}TeCl_{2}$$
(2)

Some other examples of the addition of TeCl_4 to terminal and inner alkynes were described later [2] and the Z configuration was proposed for the adducts. A related reaction involves the addition of TeO_2 in HOAc to phenylacetylenes in the presence of LiCl, this leads

to the formation of substituted benzo[β]tellurophene via the cyclization of the primary adduct [3].

In this paper, the addition of TeBr₄ to alkynes will be described. This reaction occurs in a 1:2 ratio giving $bis(\beta$ -bromovinyl)tellurium dibromides **3**. By reduction of the dibromides with NaBH₄, the corresponding divinyl tellurides **4** are obtained (Table 1, Eq. (2)). Divinylic tellurides **4** are compounds of great synthetic potential, since they combine the reactivity of the double bond to form carbon-carbon bonds with the func-

Table 1						
Stereoselective	synthesis	of	(Z)-compound	ds 3	and	4

R		Yield (%) 3 (Z:E) ^b		Yield (%) ^a 4		
C_6H_5	3a	70 (4 5:1)	4 a	89		
C_5H_{11}	3b	70 (3.4:1)	4b	70		

^a Isolated yields.

^b Determined by ¹H-NMR.

^{*} Corresponding author. Tel.: + 55 11 813654; fax: + 55 11 8154418; e-mail: hstefani@ups.br

¹ Also corresponding author.

Table 2	
Stereoselective synthe	sis of compounds 7 and 8

R	R ₁	Reaction time (h)		Yield (%) 7	(Z:E) 7		Yield (%) 8
C ₆ H ₅	C ₆ H ₅	6.5	7a	75	5.0:1	8a	79
C ₆ H ₅	C_4H_9	16	7b	74	4.9:1	8b	82
C ₅ H ₁₁	C_6H_5	15	7c	71	5.7:1	8c	84
C ₅ H ₁₁	C_4H_9	12	7d	71	4.0:1	8d	89
HOCH ₂	C_6H_5	6	7e	65	3.5:1	8e	74
HOCH ₂	C_4H_9	12	7f	60	1:1	8f	50

tional transformations achieved by the well known reactions of the organotellurium compounds [4].

$$RC \equiv CH + TeBr_{4} \xrightarrow{\text{benzene}}_{\text{reflux}}$$

$$RC \equiv CH + TeBr_{4} \xrightarrow{\text{benzene}}_{\text{reflux}} R \xrightarrow{\text{NaBH}_{4}} R \xrightarrow{\text{R}}_{\text{H}} \xrightarrow{\text{H}}_{\text{Te}} R \xrightarrow{\text{R}}_{\text{Br}} \xrightarrow{\text{H}}_{\text{H}} R \xrightarrow{\text{R}}_{\text{H}} \xrightarrow{\text{H}}_{\text{H}} x \xrightarrow{\text{R}}_{\text{H}} x$$

Recently, we described the addition of an aryltellurium trichloride to terminal acetylenes in benzene at reflux temperature. This reaction gives rise to 5, (β chlorovinyl)aryl tellurium dichlorides [5,6] which can be converted to the corresponding tellurides by reduction with NaBH₄ (Eq. (3)).

$$RC = CH + MeOC_{6}H_{4}TeCl_{3} \xrightarrow[reflux]{end}{end}$$

$$Cl_{1} \xrightarrow{Cl_{1}} Te-C_{6}H_{4}OMe \xrightarrow{NaBH_{4}} Cl_{R} \xrightarrow{Te-C_{6}H_{4}OMe} \frac{NaBH_{4}}{THF / H_{2}O} \xrightarrow{Cl_{1}} \frac{Te-C_{6}H_{4}OMe}{6}$$
(3)

 $R = Ph, p-MeC_6H_4, p-MeOC_6H_4, p-C_2H_5OC_6H_4, p-ClC_6H_4, p-BrC_6H_4, CH_2OH, HOC_6H_{10}, C_6H_{11}.$

A recent paper of Huang [7] describes the addition of aryltellurium tribromide to alkynes. This gives (β -bro-movinyl)aryl tellurium dibromides which exhibit the Z or E configuration depending on the solvent—benzene or methanol—used in the reaction.

In view of our continued interest in this kind of reaction, we report the results obtained in our laboratory about this subject. Following preliminary results concerning the addition of PhTeBr₃ to terminal acetylenes [8], we have successfully extended the addition reaction to alkyl tellurium tribromides. The expected (β -bromovinyl)organyl tellurium dibromides 7 were obtained in good yields. The reduction of 7 with NaBH₄ gives the corresponding tellurides **8** (Table 2, Eq. (4)).

$$RC = CH + R_{1}TeBr_{3} \xrightarrow{\text{benzene}}_{\text{reflux}}$$

$$R \longrightarrow H \xrightarrow{H} NaBH_{4} / H_{2O} \xrightarrow{R} H_{1}$$

$$Br \longrightarrow Br} Br \xrightarrow{TeR_{1}} THF, 30 \text{ min} \xrightarrow{Br} TeR_{1}$$

$$7 \qquad 8 \qquad (4)$$

1. X-ray structure analysis

Details of cell data, X-ray data collection and refinement are given in Table 3.

A complete crystallographic description of this and of the related Cl-compound will be published elsewhere [9]. The ORTEP drawing of Z-bis(β -bromovinyl)tellurium dibromide with the atom-numbering is shown in Fig. 1.

In accord with the literature, our NMR data support the view that Z isomers are the main products in both reactions. X-ray analysis of adduct 3a agrees with the Z,Z geometry of the double bonds.

2. Experimental section

2.1. General

¹H-NMR spectra were recorded on a Bruker AC-200 spectrometer using tetramethylsilane as the standard ¹³C-NMR spectra were obtained on a Bruker AC-200 using the central peak of CDCl₃ (77.0 ppm) as the standard. IR spectra were recorded on a Perkin Elmer 1600 spectrophotometer. Elemental analyses were performed at the Microanalytical Laboratory of the Institute of Chemistry, USP. Column chromatography was carried out using Merck silica-gel (230–400 mesh) according to the procedure of Still and coworkers [10]. All solvents were dried and distilled according to the established methods [11].

2.2. Addition of $TeBr_4$ to alkynes: bis(β -bromovinyl)tellurium dibromides **3**

2.2.1. Typical experiment

To a solution of tellurium tetrabromide (2 mmol) in benzene (20 ml) was added phenylacetylene (0.41 g, 4 mmol). The mixture was boiled under reflux for 15 h and the reaction was monitored by TLC. After this time the mixture was treated with methanol/water (1:1; 3×20 ml) and the organic phase was extracted with dichloromethane (2×20 ml). The organic phase was dried over magnesium sulfate and the solvents evaporated in a rotary evaporator. The resulting oil was purified by column chromatography eluting first with hexane and then with a mixture of hexane/ethyl acetate (1:1).**3a**-Anal.Calcd. for C₁₆H₁₂TeBr₄: C, 29.50; H, 1.96; Found: C, 29.85; H, 1.93%. ¹H-NMR (CDCl₃) δ 7.38–7.65 (m, 10H); 8.24 (s, 1H); 8.44 (s, 3H). ¹³C-NMR (CDCl₃) δ 121.57; 124.08; 127.59; 128.02; 128.76; 129.43; 131.24; 136.05; 140.16. [IR (neat) $v_{\text{max/cm}-1}$ 686; 710; 731; 876; 1210; 1442; 1486; 1549; 3026]cm⁻¹.**3b**-Anal.Calcd. for C₁₄H₂₄TeBr₄: C, 26.29; H, 3.52; Found: C, 26.49; H, 3.78%. ¹H-NMR (CDCl₃) δ 0.90 (t, 6H, J = 6.6 Hz); 1.32–1.48 (m, 4H); 1.62–180 (m, 8H); 2.67 (t, 6H, J = 6.7 Hz); 3.09 (t, 2H, J = 6.7 Hz); 7.67 (t, ¹H, J = 1.0 Hz); 7.85 (t, 3H, J = 1.0 Hz). ¹³C-NMR (CDCl₃) δ 13.81; 22.13; 30.18; 30.78; 33.76; 42.35; 120.58; 124.87; 139.09; 145.21. [IR (neat) $v_{\text{max/cm}-1}$ 732;

Table 3

Crystal data and structure refinement for bis(2-bromo-2-phenylethenyl)tellurodibromide

Compound	3a			
Color/shape	Yellow/irregular			
Formula	Br ₄ Cl ₆ H ₁₂ Te			
Formula weight	651.50			
Temperature (K)	293			
Crystal system	Orthorhombic			
Space group	Pna2,			
$a(\dot{A})$	19.159(2)			
$b(\mathbf{A})$	5.781(1)			
$c(\dot{A})$	16.787(1)			
$\alpha(^{\circ})$	90			
$\beta(^{\circ})$	90			
γ(°)	90			
$V(Å^3)$	1859.3(4)			
$D_{c}(g \text{ cm}^{-3})$	2.327			
Z	4			
μ (Mo-K _a) (mm ⁻¹)	10.187			
Diffractometer/scan	CAD4-Mach $3/\omega/2\theta$			
Radiation/wavelength (Å)	$Mo-K_{\alpha}/0.71073$			
F(000)	1200			
Crystal size (mm)	0.35×0.20 (max./min.)			
θ range data collection (°)	2.42-26			
Index ranges (h, k, l)	-23/0, 0/7, 0/20			
Reflections collected	1822			
Independent/observed	1822/932			
reflections $[I > 2\sigma(I)]$				
Absorption correction	psi-scans			
Range of relative transmission factors	0.99 and 0.57			
Refinement method	Full-matrix least-squares			
	on F^2			
Data/restraint/parameters	1822/1/190			
Goodness-of-fit on F^2	1.104			
SHELX-93 weight parameters	0.0440/3.8360			
Final R indices $[I > 2\sigma(I)]$	$R_1 = 0.0404,$			
	$wR_2 = 0.0825$			
R indices (all data)	$R_1 = 0.0825,$			
	$wR_2 = 0.1150$			
Largest difference peak and hole $(e \text{ Å}^{-3})^{n a}$	1.025 and -0.824			
Absolute structure parameter	0.05(8)			

 $^{\rm a}$ The largest peaks have no chemical significance and are located between Te and Br_2.

911; 1111; 1164; 1206; 1378; 1463; 1595; 2928; 3013]cm⁻¹.

2.3. $Bis(\beta$ -bromovinyl)tellurides 4

2.3.1. Typical experiment

A solution of bis(2-bromo-1-vinyl)dibromotelluride (2 mmol) in tetrahydrofuran (15 ml) was treated dropwise with a solution of sodium borohydride (0.075 g, 2mmol) in water (10 ml). After 30 min of stirring at room temperature (r.t.) the mixture was diluted with ether (30 ml) and washed with water, a saturated solution of ammonium chloride, and brine. The organic phase was dried over magnesium sulfate and the solvent evaporated in a rotary evaporator. The residual oil was filtered through a column of silica gel, eluting with hexane.4a-Anal. Calcd. C₁₆H₁₂TeBr₂: C, 39.09; H, 2.46; Found: C, 38.74; H, 2.44%. ¹H-NMR (CDCl₃) δ 7.28-7.52 (m, 10H); 7.71 (s, 1H); 7.90 (s, 3H). ¹³C-NMR $(CDCl_3)$ δ 105.18; 110.92; 126.94; 127.93; 128.40; 128.59; 129.40; 131.40; 139.31. [IR (neat) $v_{\text{max/cm}^{-1}}$ 698; 745; 788; 869; 1154; 1212; 1441; 1485; 1586; 3022; 3050]cm⁻¹.4b-¹H-NMR (CDCl₃) δ 0.90 (t, 6H, J = 6.6Hz); 1.25-1.36 (m, 4H); 1.48-1.58 (m, 8H); 2.45-2.60 (m, 6H); 6.95 (t, 1H, J = 1.0 Hz); 7.07 (t, 3H, J = 1.0Hz). ¹³C-NMR (CDCl₃) δ 13.95; 22.33; 28.14; 30.61; 30.97; 39.05; 43.64; 103.57; 113.09; 129.10; 135.99. [IR (neat) $v_{\text{max/cm}^{-1}}$ 761; 1046; 1114; 1202; 1418; 1449; 1574; 2856; 2931]cm⁻¹.

2.4. Addition of organoyltellurium tribromide to alkynes: (β-bromovinyl)organyl tellurium dibromides 7

2.4.1. Typical procedure

Phenyltellurium tribromide (2 mmol) was added to phenylacetylene (0.204 g,2 mmol) in benzene (20 ml). The mixture was refluxed for 6.5 h, and the reaction was monitored by TLC (eluting with dichloromethane). After this time the mixture was washed with methanol/ water (1:1; 3×20 ml) and the organic phase was extracted with dichloromethane $(2 \times 20 \text{ ml})$. The organic phase was dried over magnesium sulfate, and the solvent was evaporated in a rotary evaporator. The residual oil was filtered through a column of silica gel, eluting first with hexane and then with a mixture of hexane/ethyl acetate.7a-¹H-NMR (CDCl₃) δ 7.40–7.64 (m, 8H); 7.85 (s, 1H); 8.18 (s, 1H); 8.31 (d, 2H, J = 6.5Hz); 13 C-NMR (CDCl₃) δ 124.18; 126.28; 127.93; 128.03; 128.69; 129.27; 130.20; 131.17; 131.39; 131.75; 134.22; 134.77; 135.28; 136.16; 139.05; 140.35. [IR (neat) $v_{\text{max/cm}^{-1}}$ 680; 723; 771; 873; 994; 1192; 1437; 1474; 1549; 3046]cm⁻¹.7b⁻¹H-NMR (CDCl₃) δ 1.04 (t, 3H, J = 6.8 Hz); 1.50–1.63 (m, 4H); 2.12–2.33 (m, 2H); 3.78 (t, 2H, J = 7.6 Hz); 3.88 (t, 2H, J = 7.6 Hz); 7.39–764 (m, 5H); 7.75 (s, 1H); 8.07 (s, 1H). ¹³C-NMR $(CDCl_3) \delta$ 13.46; 24,35; 27.40; 47.20; 48.53; 119.26;

Fig. 1. ORTEP drawing of Z-bis(β -bromovinyl phenyl)telluride dibromide 3a.

121.13; 127,91; 128.07; 129.15; 131.17; 136.36; 141.14. [IR (neat) $v_{\text{max/cm}^{-1}}$ 683; 746; 873; 1170; 1211; 1250; 1487; 1556; 2952; 3004]cm⁻¹7c⁻¹H-NMR 1442; $(CDCl_3) \delta 0.92$ (t, 3H, J = 7.2 Hz); 1,30–147 (m, 2H); 1.52-1.78(m, 4H); 2.69 (t, 2H, J = 7.5 Hz); 3.08 (t, 2H, J = 7.5 Hz); 6.99 (t, 1H, J = 0.8 Hz); 7.51–7.60 (m, 3H); 7.77 (t, 1H, J = 1.2 Hz); 8.25 (d, 2H, J = 6.5 Hz). ¹³C-NMR (CDCl₃) δ 13.85; 22.21; 27.74; 30.23; 42.30; 121.39; 126,03; 130.23; 131.67; 132.07; 135.58; 141.51; 145.67. [IR (neat) $v_{\text{max/cm}^{-1}}$ 682; 733; 996; 1052; 1161; 1328; 1437; 1474; 1594; 2857; 2955]cm⁻¹.7d-¹H-NMR $(CDCl_3)$ δ 0.89–1.10 (m, 6H); 1.29–1.74 (m, 6H); 2.18-2.30 (m, 2H); 2.68 (t, 2H, J = 7.2 Hz); 2.99 (t, 2H, J = 7.6 Hz); 3.79 (t, 2H, J = 7.6 Hz); 7.20 (t, 1H, J = 0.8 Hz); 7.63 (t, 1H, J = 1.2 Hz). ¹³C-NMR $(CDCl_3)$ δ 27.23; 27.76; 30.23; 30.97; 34.12; 42.40; 46.73; 51.09; 119.60; 120.79; 137.19; 146.34. [IR (neat) v_{max/cm⁻¹} 756; 1048; 1170; 1454; 1594; 2924]cm⁻¹.7e-¹H-NMR (CDCl₃) δ 1.86 (s, 1H); 3.05 (s, 1H); 4.47 (s, 2H); 4.84 (s, 2H); 6.83 (t, 1H, J = 1.2 Hz); 7.46–7.61 (m, 3H); 7.97 (t, 1H, J = 2.4 Hz); 8.24 (d, 2H, J = 7.2Hz). ¹³C-NMR (CDCl₃) δ 67.27; 120.39; 124.72; 129.59; 130.27; 131.87; 134.81; 136.33; 142.35. [IR (neat) v_{max} cm⁻¹ 682; 732; 995; 1043; 1247; 1373; 1437; 1474; 1605; 1705; 3054; 3408]cm⁻¹.7f⁻¹H-NMR (CDCl₃) δ 2.15– 2.27 (m, 2H); 3.57 (s, 1H); 3.71 (t, 2H, J = 7.6 Hz); 3.86 (t, 2H, J = 7.6 Hz); 4.48 (t, 2H, J = 7.0 Hz); 4.75 (t, 2H, 2H); 4.75 (t, 2HJ = 7.0 Hz); 7.18 (t, 1H, J = 1.2 Hz); 8.15 (t, 1H, J = 1.6 Hz). ¹³C-NMR (CDCl₃) δ 7.79; 11.62; 11.90; 37.19; 56.95; 63.90; 127.68; 132.57; 161,60; 163.29. [IR (neat) $v_{\max/cm^{-1}}$ 693; 770, 1043; 1180; 1250; 1400; 1460; 1604; 2869; 2929; 2959; 3462]cm⁻¹.

2.5. (β-Bromovinyl)organyl tellurides 8

2.5.1. Typical experiment

A solution of 1-(dibromoorganyltellurium)-2-bromo-2-organoethene (2 mmol) in tetrahydrofuran (15 ml) was treated dropwise with a solution of sodium borohydride (0.075 g, 2 mmol) in water (10 ml). After 30 min of stirring at r.t. the mixture was diluted with ether (30 ml) and washed with water, a saturated solution of ammonium chloride, and brine. The organic phase was dried over magnesium sulfate and the solvents evaporated in a rotary evaporator. The residual oil was filtered through a column of silica gel, eluting with hexane.8a-¹H-NMR (CDCl₃) δ 7.38 (s, 1H); 7.22–7.50 (m, 8H); 7.77 (s, 1H); 7.86 (d, 2H, J = 6.5 Hz). ¹³C-NMR (CDCl₃) δ 113.74; 114.58; 126.91; 128.26; 128.48; 128.51; 129.24; 129.64; 129.93; 137.57; 138.28; 138.87; 139.42. [IR (neat) $v_{\text{max/cm}^{-1}}$ 691; 732; 867; 997; 1017; 1209; 1433; 1474; 1573; 3051]cm⁻¹.8b⁻¹H-NMR $(CDCl_3) \delta 0.93$ (t, 3H, J = 7.6 Hz); 1.35–1.47 (m, 2H); 1.78-1.92 (m, 2H); 2.73 (t, 2H, J = 7.6 Hz); 2.80 (t, 2H, J = 7.6 Hz); 7.41 (s, 1H); 7.25–7.52 (m, 5H); 7.73 (s, 1H). ¹³C-NMR (CDCl₂) δ 7.71; 13.30; 24.98; 34.32; 109.84; 126.84; 128.22; 128.94; 130.67; 139.78. [IR (neat) $v_{\text{max/cm}^{-1}}$ 700; 749; 866; 1161; 1441; 1486; 1549; 2925; 2957]cm⁻¹.8c-¹H-NMR (CDCl₃) δ 0.88 (t, 3H, J = 7.2 Hz); 1.22–1.33 (m, 2H); 1.47–1.58 (m, 4H); 2.43 (t, 2H, J = 7.6 Hz); 2.51 (t, 2H, J = 7.6 Hz); 6.55 (t, 1H, J = 0.8 Hz); 7.02 (t, 1H, J = 1.2 Hz); 7.19–7.30 (m, 3H); 7.77 (d, 2H, J = 6.5 Hz). ¹³C-NMR (CDCl₃) δ 13.89; 22.03; 28.07; 30.44; 43.39; 108.19; 113.27; 128.00; 129.37; 134.96; 138.46. [IR (neat) $v_{\text{max/cm}^{-1}}$ 691; 732; 998; 1018; 1162; 1434; 1473; 1574; 2856; 2928]cm⁻¹.8d-¹H-NMR (CDCl₃) δ 0.88–0.96 (m, 6H); 1.25–1.60 (m, 6H); 1.70-1.86 (m, 2H); 2.52 (t, 2H, J = 7.6 Hz); 2.71(t, 2H, J = 7.6 Hz); 3.11 (t, 2H, J = 7.6 Hz); 6.52 (t, 1H, 1H);J = 0.8 Hz); 6.95 (t, 1H, J = 1.2 Hz). ¹³C-NMR $(CDCl_3) \delta 6.59; 13.38; 13.95; 22.32; 24.98; 28.03; 30.28;$ 34.33; 43,64; 108.90; 119.49; 135.89. [IR (neat) $v_{\text{max/cm}^{-1}}$ 761; 1160; 1377; 1418; 1452; 1573; 2956]cm⁻¹.8e⁻¹H-NMR (CDCl₃) δ 2.26 (s, 2H); 2.92 (s, 1H); 4.22 (s, 2H); 6.12 (t, 1H, J = 1.6 Hz); 7.21–7.33 (m, 3H); 7.49 (t, 1H, J = 1.2 Hz); 7.78 (d, 2H, J = 6.5 Hz). ¹³C-NMR $(CDCl_3) \delta$ 65.72; 68.88; 103.56; 111.40; 112.27; 113.35; 125.41; 128.36; 129.49; 131.54; 138.66; 139.80. [IR (neat) $v_{\text{max/cm}^{-1}}$ 691; 734; 1017; 1067; 1157; 1434; 1473; 1573; 2919; 3051; 3335]cm⁻¹.8f⁻¹H-NMR (CDCl₃) δ 0.94 (t, 2H, J = 7.6 Hz); 1.36–1.45 (m, 2H); 1.80–1.87 (m, 2H); 2.50 (s, 1H); 2.76 (t, 2H, J = 7.6 Hz); 4.28 (s, 2H); 4.73 (s, 1H); 6.50 (t, 1H, J = 1.2 Hz); 7.48 (t, 1H, J = 1.6 Hz). ¹³C-NMR (CDCl₃) δ 7.05; 13.34; 24.93; 34.28; 66.06; 69.18; 106.75; 107.36; 121.66; 132.42. [IR (neat) $v_{\text{max/cm}^{-1}}$ 836; 1072; 1160; 1248; 1376; 1450; 1729; 2923; 3409]cm⁻¹.

Acknowledgements

We thank the following agencies for support: CNPq, FAPESP, FAPERGS and GTZ.

References

- [1] M.M. Campos, N. Petragnani, Tetrahedron 18 (1962) 527.
- [2] S. Uemura, H. Miyoshi, M. Okano, Chem. Lett. (1979) 1357.

- [3] J. Bergman, L. Engman, J. Organomet. Chem. 199 (1980) 377.
 [4] J.V. Comasseto, L.W. Ling, N. Petragnani, H.A. Stefani, Synthesis (1997) 373.
- [5] H.A. Stefani, J.V. Comasseto, A. Chieffi, J. Zukerman-Schpector, Organometallics 10 (1991) 845.
- [6] J. Zukerman-Schpector, J.V. Comasseto, H.A. Stefani, Acta Cryst. C47 (1991) 960.
- [7] X. Huang, Y.-P. Wang, Tetrahedron Lett. 37 (1996) 7417.
- [8] This work was reported at the Proceedings of the 18°Brazilian Chemical Society Meeting, Poços de Caldas, MG-Brasil, May 27–30, 1996.
- [9] J. Zukerman-Schpector, M.J. Dabdoub, A.L. Biazzotto Braga, L. Dornelles, H.A. Stefani, I. Caracelli, J. Chem. Crystallogr (submitted JCCA 596).
- [10] W.C. Still, M. Kahn, A. Mitra, J. Org. Chem. 44 (1979) 4467.
- [11] D.D. Perrin, W.L.F. Armarego, D.R. Perrin, Purification of Laboratory Chemicals, Pergamon Press, Oxford, 1966.